Automorphism Fixed Points in the Moduli Space of Semistable Bundles

نویسنده

  • Jørgen Ellegaard
چکیده

Given an automorphism τ of a smooth complex algebraic curve X, there is an induced action on the moduli space M of semi-stable rank 2 holomorphic bundles with fixed determinant. We give a complete description of the fixed variety in terms of moduli spaces of parabolic bundles on the quotient curve X/〈τ〉.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Principal Bundles on Projective Varieties and the Donaldson-uhlenbeck Compactification

Let H be a semisimple algebraic group. We prove the semistable reduction theorem for μ–semistable principal H–bundles over a smooth projective variety X defined over the field C. When X is a smooth projective surface and H is simple, we construct the algebro– geometric Donaldson–Uhlenbeck compactification of the moduli space of μ–semistable principal H–bundles with fixed characteristic classes ...

متن کامل

Picard groups of the moduli spaces of semistable sheaves I USHA

We compute the Picard group of the moduli space U ′ of semistable vector bundles of rank n and degree d on an irreducible nodal curve Y and show that U ′ is locally factorial. We determine the canonical line bundles of U ′ and U ′ L, the subvariety consisting of vector bundles with a fixed determinant. For rank 2, we compute the Picard group of other strata in the compactification of U ′.

متن کامل

1 Projective moduli space of semistable principal sheaves for a reductive group 1

This contribution to the homage to Silvio Greco is mainly an announcement of results to appear somewhere in full extent, explaining their development from our previous article [G-S1] on conic bundles. In [N-S] and [S1] Narasimhan and Seshadri defined stable bundles on a curve and provided by the techniques of Geometric Invariant Theory (GIT) developed by Mumford [Mu] a projective moduli space o...

متن کامل

Variations of moduli of parabolic bundles

1. Introduction In this paper, we study the moduli spaces of semistable parabolic bundles of arbitrary rank over a smooth curve X with marked points in a nite subset P of X. A parabolic bundle consists of a holomorphic bundle E over X together with weighted ags in the bers E p for each p 2 P. The moduli space M of semistable parabolic bundles was constructed by Mehta and Seshadri as the space o...

متن کامل

Infinitesimal Deformations of a Calabi-yau Hypersurface of the Moduli Space of Stable Vector Bundles over a Curve

Let X be a compact connected Riemann surface of genus g, with g ≥ 2, andMξ a smooth moduli space of fixed determinant semistable vector bundles of rank n, with n ≥ 2, over X . Take a smooth anticanonical divisor D on Mξ. So D is a Calabi-Yau variety. We compute the number of moduli of D, namely dimH(D, TD), to be 3g − 4 + dimH0(Mξ, K −1 Mξ ). Denote by N the moduli space of all such pairs (X , ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008